Quiz 12 Solutions, Sections 107—112

True-false

1. If a 2×2 matrix A satisfies $A^2 = O$, then A has to be an upper triangular matrix whose diagonal entries are 0's.

Solution. **False**
$$
A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}
$$
 contains no zeros but $A^2 = O$.

2. Let $T: V \to V$ be a linear transformation whose eigenvalue is 2 only and $\dim V = 6$. Denote $T - 2\mathcal{I}$ by U and suppose that we have three linearly independent vectors v_1 , v_2 , and v_3 such that $U^2v_i = 0$ but $Uv_i \neq 0$ for each $i = 1, 2, 3$. Then ${v_1, Uv_1, v_2, Uv_2, v_3, Uv_3}$ is a Jordan basis for T.

Solution. False Be careful about the order! $\{Uv_1, v_1, Uv_2, v_2, Uv_3, v_3\}$ is a Jordan basis. \Box

3. Let A be a nonzero 2×2 matrix such that $A^2 = O$. Then the Jordan canonical form of A is unique.

Solution. True If $Av = \lambda v$, then $A^2v = \lambda^2v$ but since $A^2 = O$, $\lambda = 0$ is the unique eigenvalue. As 0 is an eigenvalue, dim ker $A \geq 1$, but since A is nonzero, rk $A \geq 1$. By the dimension theorem, dim ker $A = 1$. Now, as $A^2 = O$, dim ker $A^2 = 2$. Hence, the dot diagram is \bullet so that the Jordan canonical form has to be $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. \Box

4. Let $T: V \to V$ be a linear transformation and dim $V = 8$. Suppose that the characteristic polynomial of T is $(\lambda - 3)^5 (\lambda - 5)^3$. Then dim $(T - 5\mathcal{I})^3 = 3$.

Solution. True Yes, it is the dimension of the corresponding generalized eigenspace. \Box

5. Suppose that a nonzero 3×3 matrix A satisfies $A^2 = O$. Then there is a unique Jordan canonical form (up to reordering) of A.

Solution. True If $Av = \lambda v$, $A^3v = \lambda^3v$. So, the only eigenvalue is 0. Hence, dim ker $A \geq 1$. On the other hand, as A is nonzero, rk $A \geq 1$ so that dim ker $A \leq 2$. Now, as $A^2 = O$, dim ker $A^2 = 3$. Therefore, the dot diagram has to be \bullet . It

 $\sqrt{ }$ \setminus 0 1 0 results that the Jordan canonical form (up to reordering) is 0 0 0 \cdot \Box $\overline{1}$ 0 0 0

6. There exists a square matrix U such that dim ker $U = 1$, dim ker $U^2 = 3$, and dim ker $U^3 = 4$.

Solution. False As dim ker $U = 1$, 0 is an eigenvalue. Considering the Jordan blocks corresponding to 0, we can easily see that there should be only one Jordan block corresponding to 0. Hence, U^2 would give dim ker two. In fact, if dim ker $U = 1$, then dim ker $U^k = k$ until k reaches to the stabilizing constant. \Box

Written

Version 1 Find a Jordan basis and the corresponding Jordan canonical form of the following matrix: (note that the characteristic polynomial is $(\lambda - 1)^4$ and, if possible, use "top-to-bottom" algorithm)

$$
\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.
$$

Solution. Denote by U the matrix obtained by the given matrix minus \mathcal{I} . Then, there are two linearly independent columns of U, so ker $U = 4 - 2 = 2$. One can easily see that $U^2 = O_{4 \times 4}$. Hence, ker $U^2 = 4$ and the dot diagram becomes $\bullet \bullet$ so that we can apply "top-to-bottom" algorithm. We first find ker U as the span of $(1, 0, 0, 0)$ and $(0, 1, 0, 0)$. (These two, denoted by v_1 and v_3 , will be the two upper bullets.) For

the lower ones, we solve the equation
$$
Uv_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}
$$
 and $Uv_4 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$. One can easily

see that $v_2 = (0, 0, -1, 1)$ and $v_4 = (0, 0, 1, 0)$ work. Hence, $\beta = \{v_1, v_2, v_3, v_4\}$ gives its Jordan canonical form $\sqrt{ }$ \vert 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 \setminus $\left| \cdot \right|$

Version 2 Find a Jordan basis and the corresponding Jordan canonical form of the following matrix: (for the characteristic polynomial, use cofactor expansion using the second column)

$$
\begin{pmatrix} 3 & 0 & 1 \ 1 & 2 & 1 \ -1 & 0 & 1 \end{pmatrix}.
$$

Solution. Cofactor expansion with respect to the second column gives the characteristic polynomial $-(\lambda - 2)^3$. Denoting by A the given matrix, we get ker(A – 2 \mathcal{I}) = Span $\{(1,0,-1), (0,1,0)\}\$. By CHT, we already know that $(A - 2\mathcal{I})^3 = O$ so that $\ker(A - 2\mathcal{I})^3$ is of dimension 3. So, $\ker(A - 2\mathcal{I})^k$ should stabilize from $k = 2$ not $k = 1$ so that the dot diagram is \bullet \bullet . Let's choose an arbitrary vector, denoted by v_2 for a reason that will become clear later, not in the first row of the dot diagram: $v_2 =$ $\sqrt{ }$ $\overline{1}$ 0 0 1 \setminus . Then, $(A - 2\mathcal{I})v_2 =$ $\sqrt{ }$ \mathcal{L} 1 1 −1 \setminus and let's denote this by v_1 . Now, v_3 will be an arbitrary one, say $\sqrt{ }$ $\overline{1}$ $\overline{0}$ 1 0 \setminus , from ker $(A - 2\mathcal{I})$ which is not a multiple of v_1 . Then, $\beta = \{v_1, v_2, v_3\}$ will give its Jordan canonical form $\sqrt{ }$ $\overline{1}$ 2 1 0 0 2 0 0 0 2 \setminus \cdot

Version 3 Prove that any 4×4 upper triangular matrix whose diagonal entries are all zero is nilpotent. (A square matrix U is called nilpotent if $U^k = O$ for some positive integer k .)

Solution. An upper triangular matrix A sends e_1 to 0. It sends e_2 to a multiple of e_1 . It sends e_3 to a linear combination of e_1 and e_2 . Finally, it sends e_4 to a linear combination of e_1, e_2 , and e_3 . So, im $A|_{Span\{e_1, \dots, e_i\}} \subset Span\{e_1, \dots, e_{i-1}\}$ for $i \geq 2$ and im $A|_{\text{Span}\{e_1\}} = 0$. So, im $A^4 = \text{im } A^4|_{\text{Span}\{e_1, e_2, e_3, e_4\}} = \text{im } A^3|_{\text{im } A|_{\text{Span}\{e_1, e_2, e_3, e_4\}}} \subset$ im $A^{3}|_{\text{Span}\{e_1,e_2,e_3\}}$. Inductively, we get that \subset im $A^{2}|_{\text{Span}\{e_1,e_2\}} \subset \text{im } A|_{\text{Span}\{e_1\}} = 0$. The image being the zero vector space implies $A^4 = O$.

 \Box

 \Box

Here is another simple proof that may contain information that some may find feeling not good: The characteristic polynomial of an $n \times n$ upper triangular matrix A whose diagonal entries are all zero is λ^n . By CHT, $A^n = O$, so it is nilpotent.