
Quiz 12 Solutions, Sections 107—112

True-false

1. If a 2×2 matrix A satisfies A2 = O, then A has to be an upper triangular matrix
whose diagonal entries are 0’s.

Solution. False A =

(
1 −1
1 −1

)
contains no zeros but A2 = O.

2. Let T : V → V be a linear transformation whose eigenvalue is 2 only and
dimV = 6. Denote T −2I by U and suppose that we have three linearly independent
vectors v1, v2, and v3 such that U2vi = 0 but Uvi 6= 0 for each i = 1, 2, 3. Then
{v1, Uv1, v2, Uv2, v3, Uv3} is a Jordan basis for T .

Solution. False Be careful about the order! {Uv1, v1, Uv2, v2, Uv3, v3} is a Jordan
basis.

3. Let A be a nonzero 2× 2 matrix such that A2 = O. Then the Jordan canonical
form of A is unique.

Solution. True If Av = λv, then A2v = λ2v but since A2 = O, λ = 0 is the unique
eigenvalue. As 0 is an eigenvalue, dim kerA ≥ 1, but since A is nonzero, rk A ≥ 1.
By the dimension theorem, dim kerA = 1. Now, as A2 = O, dim kerA2 = 2. Hence,

the dot diagram is
•
• so that the Jordan canonical form has to be

(
0 1
0 0

)
.

4. Let T : V → V be a linear transformation and dimV = 8. Suppose that the
characteristic polynomial of T is (λ− 3)5(λ− 5)3. Then dim(T − 5I)3 = 3.

Solution. True Yes, it is the dimension of the corresponding generalized eigenspace.
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5. Suppose that a nonzero 3× 3 matrix A satisfies A2 = O. Then there is a unique
Jordan canonical form (up to reordering) of A.

Solution. True If Av = λv, A3v = λ3v. So, the only eigenvalue is 0. Hence,
dim kerA ≥ 1. On the other hand, as A is nonzero, rk A ≥ 1 so that dim kerA ≤ 2.

Now, as A2 = O, dim kerA2 = 3. Therefore, the dot diagram has to be
• •
• . It

results that the Jordan canonical form (up to reordering) is

0 1 0
0 0 0
0 0 0

.

6. There exists a square matrix U such that dim kerU = 1, dim kerU2 = 3, and
dim kerU3 = 4.

Solution. False As dim kerU = 1, 0 is an eigenvalue. Considering the Jordan blocks
corresponding to 0, we can easily see that there should be only one Jordan block
corresponding to 0. Hence, U2 would give dim ker two. In fact, if dim kerU = 1, then
dim kerUk = k until k reaches to the stabilizing constant.

Written

Version 1 Find a Jordan basis and the corresponding Jordan canonical form of the
following matrix: (note that the characteristic polynomial is (λ− 1)4 and, if possible,
use “top-to-bottom” algorithm) 

1 0 0 1
0 1 1 1
0 0 1 0
0 0 0 1

 .

Solution. Denote by U the matrix obtained by the given matrix minus I. Then, there
are two linearly independent columns of U , so kerU = 4− 2 = 2. One can easily see

that U2 = O4×4. Hence, kerU2 = 4 and the dot diagram becomes
• •
• • so that we

can apply “top-to-bottom” algorithm. We first find kerU as the span of (1, 0, 0, 0)
and (0, 1, 0, 0). (These two, denoted by v1 and v3, will be the two upper bullets.) For

the lower ones, we solve the equation Uv2 =


1
0
0
0

 and Uv4 =


0
1
0
0

. One can easily



see that v2 = (0, 0,−1, 1) and v4 = (0, 0, 1, 0) work. Hence, β = {v1, v2, v3, v4} gives

its Jordan canonical form


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

.

Version 2 Find a Jordan basis and the corresponding Jordan canonical form of the
following matrix: (for the characteristic polynomial, use cofactor expansion using the
second column)  3 0 1

1 2 1
−1 0 1

 .

Solution. Cofactor expansion with respect to the second column gives the character-
istic polynomial −(λ − 2)3. Denoting by A the given matrix, we get ker(A − 2I) =
Span{(1, 0,−1), (0, 1, 0)}. By CHT, we already know that (A − 2I)3 = O so that
ker(A − 2I)3 is of dimension 3. So, ker(A − 2I)k should stabilize from k = 2 not

k = 1 so that the dot diagram is
• •
• . Let’s choose an arbitrary vector, denoted by

v2 for a reason that will become clear later, not in the first row of the dot diagram:

v2 =

0
0
1

. Then, (A− 2I)v2 =

 1
1
−1

 and let’s denote this by v1. Now, v3 will be

an arbitrary one, say

0
1
0

, from ker(A − 2I) which is not a multiple of v1. Then,

β = {v1, v2, v3} will give its Jordan canonical form

2 1 0
0 2 0
0 0 2

.

Version 3 Prove that any 4 × 4 upper triangular matrix whose diagonal entries
are all zero is nilpotent. (A square matrix U is called nilpotent if Uk = O for some
positive integer k.)

Solution. An upper triangular matrix A sends e1 to 0. It sends e2 to a multiple of
e1. It sends e3 to a linear combination of e1 and e2. Finally, it sends e4 to a linear
combination of e1, e2, and e3. So, im A|Span{e1,··· ,ei} ⊂ Span{e1, · · · , ei−1} for i ≥ 2
and im A|Span{e1} = 0. So, im A4 = im A4|Span{e1,e2,e3,e4} = im A3|im A|Span{e1,e2,e3,e4} ⊂
im A3|Span{e1,e2,e3}. Inductively, we get that⊂ im A2|Span{e1,e2} ⊂ im A|Span{e1} = 0.
The image being the zero vector space implies A4 = O.



Here is another simple proof that may contain information that some may find
feeling not good: The characteristic polynomial of an n× n upper triangular matrix
A whose diagonal entries are all zero is λn. By CHT, An = O, so it is nilpotent.


