Quiz 12 Solutions, Sections 107—112

True-false

1. If a 2×2 matrix A satisfies $A^2 = O$, then A has to be an upper triangular matrix whose diagonal entries are 0's.

Solution. False $A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$ contains no zeros but $A^2 = O$.

2. Let $T: V \to V$ be a linear transformation whose eigenvalue is 2 only and dim V = 6. Denote $T - 2\mathcal{I}$ by U and suppose that we have three linearly independent vectors v_1, v_2 , and v_3 such that $U^2v_i = 0$ but $Uv_i \neq 0$ for each i = 1, 2, 3. Then $\{v_1, Uv_1, v_2, Uv_2, v_3, Uv_3\}$ is a Jordan basis for T.

Solution. False Be careful about the order! $\{Uv_1, v_1, Uv_2, v_2, Uv_3, v_3\}$ is a Jordan basis.

3. Let A be a nonzero 2×2 matrix such that $A^2 = O$. Then the Jordan canonical form of A is unique.

Solution. True If $Av = \lambda v$, then $A^2v = \lambda^2 v$ but since $A^2 = O$, $\lambda = 0$ is the unique eigenvalue. As 0 is an eigenvalue, dim ker $A \ge 1$, but since A is nonzero, rk $A \ge 1$. By the dimension theorem, dim ker A = 1. Now, as $A^2 = O$, dim ker $A^2 = 2$. Hence, the dot diagram is \bullet so that the Jordan canonical form has to be $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

4. Let $T: V \to V$ be a linear transformation and dim V = 8. Suppose that the characteristic polynomial of T is $(\lambda - 3)^5 (\lambda - 5)^3$. Then dim $(T - 5\mathcal{I})^3 = 3$.

Solution. True Yes, it is the dimension of the corresponding generalized eigenspace. \Box

5. Suppose that a nonzero 3×3 matrix A satisfies $A^2 = O$. Then there is a unique Jordan canonical form (up to reordering) of A.

Solution. True If $Av = \lambda v$, $A^3v = \lambda^3 v$. So, the only eigenvalue is 0. Hence, dim ker $A \ge 1$. On the other hand, as A is nonzero, rk $A \ge 1$ so that dim ker $A \le 2$. Now, as $A^2 = O$, dim ker $A^2 = 3$. Therefore, the dot diagram has to be

results that the Jordan canonical form (up to reordering) is $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

6. There exists a square matrix U such that dim ker U = 1, dim ker $U^2 = 3$, and dim ker $U^3 = 4$.

Solution. False As dim ker U = 1, 0 is an eigenvalue. Considering the Jordan blocks corresponding to 0, we can easily see that there should be only one Jordan block corresponding to 0. Hence, U^2 would give dim ker two. In fact, if dim ker U = 1, then dim ker $U^k = k$ until k reaches to the stabilizing constant.

Written

Version 1 Find a Jordan basis and the corresponding Jordan canonical form of the following matrix: (note that the characteristic polynomial is $(\lambda - 1)^4$ and, if possible, use "top-to-bottom" algorithm)

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Solution. Denote by U the matrix obtained by the given matrix minus \mathcal{I} . Then, there are two linearly independent columns of U, so ker U = 4 - 2 = 2. One can easily see that $U^2 = O_{4\times 4}$. Hence, ker $U^2 = 4$ and the dot diagram becomes $\bullet \bullet \bullet \bullet$ so that we can apply "top-to-bottom" algorithm. We first find ker U as the span of (1, 0, 0, 0) and (0, 1, 0, 0). (These two, denoted by v_1 and v_3 , will be the two upper bullets.) For (1)

the lower ones, we solve the equation
$$Uv_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 and $Uv_4 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$. One can easily

see that $v_2 = (0, 0, -1, 1)$ and $v_4 = (0, 0, 1, 0)$ work. Hence, $\beta = \{v_1, v_2, v_3, v_4\}$ gives its Jordan canonical form $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

Version 2 Find a Jordan basis and the corresponding Jordan canonical form of the following matrix: (for the characteristic polynomial, use cofactor expansion using the second column)

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & 2 & 1 \\ -1 & 0 & 1 \end{pmatrix}.$$

Solution. Cofactor expansion with respect to the second column gives the characteristic polynomial $-(\lambda - 2)^3$. Denoting by A the given matrix, we get $\ker(A - 2\mathcal{I}) =$ $\operatorname{Span}\{(1,0,-1),(0,1,0)\}$. By CHT, we already know that $(A - 2\mathcal{I})^3 = O$ so that $\ker(A - 2\mathcal{I})^3$ is of dimension 3. So, $\ker(A - 2\mathcal{I})^k$ should stabilize from k = 2 not k = 1 so that the dot diagram is $\bullet \bullet \bullet$. Let's choose an arbitrary vector, denoted by v_2 for a reason that will become clear later, not in the first row of the dot diagram: $v_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Then, $(A - 2\mathcal{I})v_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ and let's denote this by v_1 . Now, v_3 will be an arbitrary one, say $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, from $\ker(A - 2\mathcal{I})$ which is not a multiple of v_1 . Then, $\beta = \{v_1, v_2, v_3\}$ will give its Jordan canonical form $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

Version 3 Prove that any 4×4 upper triangular matrix whose diagonal entries are all zero is nilpotent. (A square matrix U is called nilpotent if $U^k = O$ for some positive integer k.)

Solution. An upper triangular matrix A sends e_1 to 0. It sends e_2 to a multiple of e_1 . It sends e_3 to a linear combination of e_1 and e_2 . Finally, it sends e_4 to a linear combination of e_1 , e_2 , and e_3 . So, im $A|_{\text{Span}\{e_1,\dots,e_i\}} \subset \text{Span}\{e_1,\dots,e_{i-1}\}$ for $i \geq 2$ and im $A|_{\text{Span}\{e_1\}} = \mathbf{0}$. So, im $A^4 = \text{im } A^4|_{\text{Span}\{e_1,e_2,e_3,e_4\}} = \text{im } A^3|_{\text{im } A|_{\text{Span}\{e_1,e_2,e_3,e_4\}}} \subset \text{im } A^3|_{\text{Span}\{e_1,e_2,e_3\}}$. Inductively, we get that $\subset \text{ im } A^2|_{\text{Span}\{e_1,e_2\}} \subset \text{ im } A|_{\text{Span}\{e_1\}} = \mathbf{0}$. The image being the zero vector space implies $A^4 = O$.

Here is another simple proof that may contain information that some may find feeling not good: The characteristic polynomial of an $n \times n$ upper triangular matrix A whose diagonal entries are all zero is λ^n . By CHT, $A^n = O$, so it is nilpotent. \Box