Quiz 11 Solutions, Sections 107–112

True-false

Let $T: V \to V$ be a diagonalizable linear operator. Then V is T-cyclic. 1.

Solution. False As a counterexample, let dim V > 1 and set $T = \mathcal{I}_V$ the identity operator. It is diagonalizable but V cannot be \mathcal{I}_V -cyclic, because

$$\operatorname{Span}\{v, \mathcal{I}(v), \mathcal{I}^2(v)\} = \operatorname{Span}\{v, v, v\} = \operatorname{Span}\{v\} \neq V$$

for any $v \in V$.

There exists an operator $T: \mathbb{C}^3 \to \mathbb{C}^3$ such that $m_a(-1) = 2$ but $(T + \mathcal{I})^2 \neq O$. 2.

Solution. True The conditions force the restriction of $T + \mathcal{I} = T - (-\mathcal{I})$ to the generalized eigenspace K_{-1} to be zero, but the parts of T + I acting on the other generalized eigenspaces won't be zero. Concretely, take the operator corresponding to the Jordan matrix

$$J = \begin{pmatrix} -1 & 1 & 0\\ 0 & -1 & 0\\ 0 & 0 & 2 \end{pmatrix}.$$

We see that

$$(J+I)^{2} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 9 \end{pmatrix} \neq O.$$

3. Let $T: \mathbb{C}^n \to \mathbb{C}^n$ be a linear operator. If $T - \lambda \mathcal{I}$ is nilpotent, then T only has one eigenvalue.

Solution. True The generalized eigenspace K_{λ} is the subspace on which $T - \lambda \mathcal{I}$ acts nilpotently. If $T - \lambda \mathcal{I}$ is nilpotent, it acts nilpotently on all vectors, so $K_{\lambda} = \mathbb{C}^n$, so $m_a(\lambda) = n$. Since an operator on an *n*-dimensional space has at most *n* eigenvalues (counted with multiplicity) we see that λ is the only eigenvalue. \square

4. If K_{λ} is the generalized eigenspace of an operator T, then K_{λ} is T-cyclic.

Solution. False If $E_{\lambda} = K_{\lambda}$, then $T|_{K_{\lambda}} = \lambda \mathcal{I}_{K_{\lambda}}$, so K_{λ} will not be *T*-cyclic. More generally, this will happen whenever there is more than one Jordan block associated to λ .

5. Every generalized eigenspace K_{λ} of T is T-invariant.

Solution. True This was a problem on the last discussion worksheet (and a theorem from class.) $\hfill \Box$

6. Let $T: V \to V$ be a linear operator and $W_1, W_2 \subseteq V$ two *T*-cyclic subspaces of *V*. Then the subspace $W_1 + W_2$ is *T*-cyclic.

Solution. False For example, take $T = \mathcal{I}$ the identity operator and $V = \mathbb{C}^2$. If W_1 is the span of the first basis vector and W_2 the span of the second, they are both cyclic, but $W_1 + W_2 = \mathbb{C}^2$ is not T-cylic.

Written

Version 1 Let V be a vector space over \mathbb{C} of dimension 3 and $T: V \to V$ be an operator with only one eigenvalue $\lambda \in \mathbb{C}$. Suppose that $(T - \lambda \mathcal{I})^2$ is nonzero and $(T - \lambda \mathcal{I})^3 = 0$. What is dim ker $T - \lambda \mathcal{I}$? Justify your answer with a mathematical proof.

Solution. Set $U = T - \lambda \mathcal{I}$. Since T has only one eigenvalue, $K_{\lambda} = V$ and U is nilpotent. By the statement of the problem, the stabilizing exponent of U is 3. This means that dim ker $U < \dim \ker U^2 < \dim \ker U^3 = 3$. Futhermore, dim ker $U \ge 1$ because λ is an eigenvalue of V. Therefore we have a list of 3 numbers between 1 and 3 that strictly increase, so they must be 1 < 2 < 3. It follows that dim ker $U = \dim \ker T - \lambda \mathcal{I} = 1$.

Version 2 Let $T : \mathbb{C}^2 \to \mathbb{C}^2$ be a linear operator given by $T(\vec{v}) = A\vec{v}$, where

$$A = \begin{pmatrix} 4 & 9\\ -1 & -2 \end{pmatrix}$$

Find a basis β of \mathbb{C}^2 such that A is in Jordan canonical form. *Hint:* the characteristic polynomial of A is $(\lambda - 1)^2$.

Solution. We first compute the geometric multiplicity:

$$A - I = \begin{pmatrix} 3 & 9 \\ -1 & 3 \end{pmatrix}$$
 is row-equivalent to $\begin{pmatrix} 1 & -3 \\ 0 & 0 \end{pmatrix}$

so $m_g(1) = 1$ and A is not diagonalizable. We see that a basis for E_1 is

$$\vec{v} = \begin{pmatrix} 3\\1 \end{pmatrix}$$
.

However, the algebraic mutiplicity of 1 is 2, so the generalized eigenspace K_1 must be all of \mathbb{C}^2 . To find a Jordan basis, we want a nonzero vector \vec{w} with $(A - I)\vec{w} = \vec{v}$. The system row-reduces to

$$\begin{pmatrix} 3 & 9 & | & 3 \\ -1 & 3 & | & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & | & 1 \\ 0 & 0 & | & 0 \end{pmatrix}$$
so one solution is $\vec{w} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Since $A\vec{v} = \vec{v}$ and $A\vec{w} = \vec{w} + \vec{v}$, we see that if

$$\beta = \left\{ \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \text{ then } [T]_{\beta} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

is in Jordan canonical form. (There are many other possible solutions, depending on the choice of eigenvector \vec{v} .)

Version 3 Let T be an operator with Jordan canonical form

where the blank areas represent blocks of zeros and λ_1, λ_2 , and λ_3 are all distinct.

- (a) Draw the corresponding dot diagrams for each λ_i .
- (b) What is the nullity of $T \lambda_i \mathcal{I}$ for each *i*?
- (c) What is the nullity of $(T \lambda_i \mathcal{I})^2$ for each *i*?

Solution. (a)

(b) The nullity of $T - \lambda_i \mathcal{I}$ is the number of independent eigenvectors, which corresponds to the first row of the dot diagrams. Therefore dim ker $(T - \lambda_1 \mathcal{I}) = 1$, dim ker $(T - \lambda_2 \mathcal{I}) = 2$, and dim ker $(T - \lambda_3 \mathcal{I}) = 1$.

(c) Each power of $T - \lambda_i \mathcal{I}$ annihilates one more row of the dot diagram, so the nullity of $T - \lambda_i \mathcal{I}$ is the number of dots in the first two rows of the dot diagram. Therefore dim ker $(T - \lambda_1 \mathcal{I})^2 = 2$, dim ker $(T - \lambda_2 \mathcal{I})^2 = 2$, and dim ker $(T - \lambda_3 \mathcal{I})^2 = 2$.