Quiz 10 Solutions, Sections 107—112

True-false

1. If J is a Jordan canonical form of a linear operator T and $c \in \mathbb{R}$, then cJ is a Jordan canonical form of the linear operator cT.

Solution. False A Jordan canonical form has to have 1's right above the diagonal entries, but cJ would have c's on that position. So, it is not true.

2. $T \in M_{n \times n}(\mathbb{R})$ defines a linear transformation from $M_{n \times n}(\mathbb{R})$ to itself defined by $A \mapsto TA$. There exists a *T*-invariant subspace of $M_{n \times n}(\mathbb{R})$ with dimension less than or equal to n.

Solution. True By Cayley-Hamilton theorem, the T-cyclic subspace generated by I has dimension less than or equal to n. $(\{I, T, T^2, \dots, T^n\}$ is linearly dependent.) \Box

3. The sum of two *T*-invariant subspaces is also *T*-invariant.

Solution. True If $T(U) \subset U$ and $T(W) \subset W$, then $T(U+W) \subset U+W$.

4. Let T be a linear operator on a finite-dimensional vector space V whose characteristic polynomial splits, and let $\lambda_1, \dots, \lambda_k$ be the distint eigenvalues of T. For each i, let β_i be a basis of E_{λ_i} , then $\beta_1 \cup \dots \cup \beta_k$ is a Jordan canonical basis of T.

Solution. False First of all, $\beta_1 \cup \cdots \cup \beta_k$ is not even a basis unless T is diagonalizable. Second of all, even if you consider K_{λ_i} (the generalized ones), you still need to choose β_i 's very carefully to get a Jordan canonical basis.

5. Every Jordan block matrix has a unique eigenvalue.

Solution. True By definition, a Jordan block is the upper triangular matrix whose diagonal entries are the same numbers and there is 1 right above each diagonal entry. It is easy to see that it has only one eigenvalue. \Box

6. Any *T*-invariant subspace *W* of *V* is a *T*-cyclic subspace.

Solution. False For $\mathcal{I}_V : V \to V$, the only kind of *T*-cyclic subspaces is the span of one single vector. But, *V* is a *T*-invariant subspace of *V*. In particular, as long as dim V > 1, this becomes a counterexample.

Written

Version 1 Suppose that $A \in M_{3\times 3}(\mathbb{C})$ has only one eigenvalue 1 and the geometric multiplicity $m_g(1)$ is 2. Prove that $(A - I)^2 = O_{3\times 3}$.

Solution. We can consider all possible Jordan canonical forms J of 3×3 complex matrices with only one eigenvalue 1. We know that any similar matrices have the same geometric multiplicities, so we can compute all possible cases where $m_g(1) = 2$. Ignoring the order issue, we get

$$J = \begin{pmatrix} 1 & & \\ & 1 & 1 \\ & & 1 \end{pmatrix}.$$

You can easily compute that $(J - I)^2 = O_{3\times 3}$. However, $J = QAQ^{-1}$ for some invertible Q. Hence, $(A - I)^2 = (Q^{-1}JQ - I)^2 = Q^{-1}(J - I)^2Q = O_{3\times 3}$.

Version 2 Let T be a linear operator on a finite-dimensional vector space V and W be a T-invariant subspace of V. Moreover, suppose that we have three eigenvectors v_1 , v_2 , and v_3 of T corresponding to all distinct eigenvalues. Prove that if $v_1 - v_2 + v_3 \in W$, then each of v_1 , v_2 , and v_3 belongs to W.

Solution. Let the corresponding eigenvalues of eigenvectors v_i 's be λ_i 's. As W is T-invariant, $T(w) \in W$ for any $w \in W$. Also, as W is a subspace, we have $\lambda_1 w \in W$. Let's pick $w = v_1 - v_2 + v_3$. Then $T(w) - \lambda_1 w \in W$ or $(T - \lambda_1 \mathcal{I}_V)(w) \in W$. In the very same way, we can apply $(T - \lambda_2 \mathcal{I}_V)$ and still get a vector in W. However, $(T - \lambda_2 \mathcal{I}_V)(T - \lambda_1 \mathcal{I}_V)(v_i)$ for i = 1 and i = 2 are zeros because v_i 's are killed by $T - \lambda_i \mathcal{I}_V$. For v_3 , we get

$$(T - \lambda_2 \mathcal{I}_V)(T - \lambda_1 \mathcal{I}_V)(v_3) = (T - \lambda_2 \mathcal{I}_V)(\lambda_3 - \lambda_1)(v_3) = (\lambda_3 - \lambda_1)(\lambda_2 - \lambda_1)v_3$$

and the coefficient is nonzero. So, $v_3 \in W$. In a similar way, by considering $(T - \lambda_j \mathcal{I}_V)(T - \lambda_k \mathcal{I}_V)$ for (j, k) = (1, 3) and (2, 3), we can deduce that v_1 and v_2 belong to W as well.

Version 3 Find an example that satisfies the following three conditions:

- 1) T is a linear operator on a finite-dimensional real vector space V and
- W is a T-invariant subspace of V.
- 2) T has some eigenvectors in V.
- 3) T has no eigenvectors in W.

Explain why your example satisfies the above conditions.

Solution. One can start from $T: V \to V$, but it turns out that starting from $T|_W$: $W \to W$ is better. What this means is that you can first find a linear transformation that does not have any eigenvectors on W and then build up V by just adding an eigenvector. Let $W = \mathbb{R}^2$ and T be a linear transformation without eigenvectors in \mathbb{R}^2 , for example, T is the left multiplication by $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Now, we just take the direct sum $W \oplus \mathbb{R}$ and define it as V and then extend T by defining T on the second component as the identity map. Then, any vector in \mathbb{R} will be an eigenvector of Twith the eigenvalue 1. Now 2 and 3 are satisfied. However, in fact, W is T-invariant obviously because its restriction on W was a linear operator from W to W from the beginning. Note that we can explicitly write down the linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$

as
$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and then $W = \{(x, y, 0) : x, y \in \mathbb{R}\}.$