Quiz 1 Solutions, Sections 107—112

True-false

1. If V is a vector space over the field F and $\alpha \in F$ a non-zero scalar, then $\alpha \vec{v} = \vec{0}$ implies that $\vec{v} = 0$.

Solution. True This was a discussion question: the trick is to write $\vec{v} = \alpha^{-1} \alpha \vec{v}$. \Box

2. Let F be a field, and let f and q be two non-zero polynomials with coefficients in F. If the degree of f is n, and the degree of g is m, then the degree of $f + g$ is mn.

Solution. False $f(x) = x$ and $g(x) = 1 - x$ are both degree 1, but $f(x) = g(x) = 1$ is degree 0. \Box

3. The set of nonnegative functions from \mathbb{R} to \mathbb{R} is a vector space over \mathbb{R} under standard operations.

Solution. False This set doesn't have additive inverses: for example the constant function $f(x) = 1$ is an element, but $-f(x) = -1$ is not. \Box

4. For any vector space V over R there exists exactly one element $a \in \mathbb{R}$ such that $a\vec{x} = \vec{x}$ for all $\vec{x} \in V$.

Solution. False For most V, this is true: the only such element is $a = 1$. But if $V = {\vec{0}}$ is the zero vector space, then $a{\vec{0}} = {\vec{0}}$ for every $a \in \mathbb{R}$. \Box

5. Every element in a field has a multiplicative inverse.

Solution. False $0 \in F$ does not have an inverse (but every other element does.) \Box

6. The set of all polynomials p for which $p(0) = 1$ is a vector space.

Solution. False If p and q are two such polynomials, then $(p+q)(0) = p(0) + q(0) =$ $1+1=2\neq 1$, so $p+q$ is not an element of this set. For a vector space, the sum of two vectors must again be a vector. \Box

Written

Version 1 Let S contain all polynomials of the form $p(x) = a_1x + a_2x^3$ with $a_1, a_2 \in$ R. Let R be the underlying field and equip S with the standard addition and scalar multiplication operations. List at least three of the vector space properties (VS 1-8) and determine whether S satisfies each of those conditions.

Solution. S is a vector space, so it satisfies all the axioms. For completeness, we describe how to prove all of them, although you only needed to show three for full credit. Let $p(x) = a_1x + a_2x^3$ and $q(x) = b_1x + b_2x^3$ be two elements of S.

(VS 1) (commutativity of addition) By using the definition of polynomial addition,

$$
p(x) + q(x) = (a_1 + b_1)x + (a_2 + b_2)x^3 = (b_1 + a_1)x + (b_2 + a_2)x^3
$$

= $q(x) + p(x)$.

- (VS 2) (associativity of addition) The proof goes exactly the same as in VS 1: we use the fact that real number addition is associative.
- (VS 3) The zero element is the zero polynomial $z(x) = 0x + 0x^3$, and we can check that

$$
p(x) + z(x) = (a_1 + 0)x + (a_2 + 0)x^3 = (a_1 + 0)x + (a_2 + 0)x^3
$$

= $a_1x + a_2x^3 = p(x)$.

(VS 4) The additive inverse of $p(x)$ is $r(x) = -a_1x - a_2x^3$, and

$$
p(x) + r(x) = (a_1 - a_1)x + (a_2 - a_2)x^3 = 0x + 0x^3 = z(x) = 0.
$$

(VS 5)

$$
1 \cdot p(x) = 1 \cdot (a_1x + a_2x^3) = (1 \cdot a_1)x + (1 \cdot a_2)x^3 = a_1x + a_2x^3 = p(x).
$$

(VS 6) If $a, b \in \mathbb{R}$, then

$$
(ab)p(x) = (ab)(a_1x + a_2x^3) = (aba_1)x + (aba_2)x^3
$$

= $a(ba_1x + ba_2x^3) = a(bp(x)).$

- (VS 7) This goes exactly as VS 6: it follows because the same property holds for the real numbers that form the coefficients of the polynomials.
- (VS 8) This goes exactly as VS 6: it follows because the same property holds for the real numbers that form the coefficients of the polynomials.

Version 2 Let

$$
\mathcal{T} = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{R} \}
$$

be the set of 2×2 upper-triangular matrices with real coefficients. List at least three of the vector space properties (VS 1-8) and determine whether $\mathcal T$ satisfies each of those properties.

Solution. $\mathcal T$ is a vector space, so it satisfies all the axioms. The proofs go exactly as in Version 1, except with matrix coefficients instead of polynomial coefficients. \Box

Version 3 Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{Q}\}$, and define an addition and scalar multiplication by

$$
(a_1, a_2) + (b_1, b_2) := (a_1 + b_2, a_2 + b_1), \quad c(a_1, a_2) := (ca_1, ca_2).
$$

Prove that the set V equipped with the above addition and scalar multiplication is not a vector space over Q.

Solution. There are a number of counterexamples: here is one of them. For any vector \vec{v} in any vector space, we must have

$$
\vec{v} + \vec{v} = 1 \cdot \vec{v} + 1 \cdot \vec{v} = (1 + 1) \cdot \vec{v} = 2\vec{v}.
$$

Set $\vec{v} = (1, 0) \in V$. Then the left-hand side of the above is

$$
\vec{v} + \vec{v} = (1,0) + (1,0) = (1+0,0+1) = (1,1)
$$

but the right-hand side is

$$
2\vec{v} = (2,0)
$$

which is a contradiction.

 \Box