\n- \n 1. Prove that if
$$
T: V \to V
$$
 is a linear operator on a finite dimensional vector space V , then $r k T^m = r k T^{m+1}$ for some $m \geq 1$, and in this case, $r k T^m = r k T^{m+k}$ for all $k \geq 0$.\n
\n- \n 2. The use of the k is the k and k is the k and k are the k and k are the k and k are the k and k are the k and k

)

2. For the following matrices, find a Jordan basis and put the matrix into Jordan canonical form.

 \cdot $\chi_{A}(\lambda) = det(A - \lambda T)$ a) $A = \begin{pmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{pmatrix}$
 $(\lambda) = \det(A - \lambda T)$ There are two eigenvalues 3 & 5. $(2nd \text{ col}) = (3-\lambda) \cdot [(4-\lambda)(4-\lambda) -$ I $m_h(3)=2$, $m_h(5)=1$ He automatically $= (3-\lambda)(3-\lambda)(2-\lambda)$ $M_{\text{g}}(3) = \frac{1}{2}$, $M_{\text{g}}(5) = 1$. $A-3I =$ $\begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{pmatrix}$ clearly has $rk(A-3I)=1 \Rightarrow dim E_3(=mg(3))$ is 2. $I = det(A - \lambda I)$ There are two eigenvalues
 $I = (3-\lambda) \cdot [(4-\lambda)(4-\lambda) - 1]$ Ma(3)=2. Ma(5)=1.
 $= (3-\lambda)(3-\lambda)(5-\lambda)$ Ma(3)=2. Ma(5)=1.
 $= (3-\lambda)(3-\lambda)(5-\lambda)$ Ma(3)= $\frac{1}{2}k$. Ma(5)=1.

The obvious relations before columns. we get
 $I = \int_{-\infty}^$: it's draparalizable. From the obvious relations both columns. we get $E_3 = \ker(A-3\tau) = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \right\}$ T_{u} A-5I= $\begin{pmatrix} -1 & 1 \\ 2 & -2 & 2 \\ 1 & -1 & -1 \end{pmatrix}$ we have $E_5 =$ Span $\begin{cases} \binom{1}{2} \end{cases}$. (No need to find
mane b/c $m_9(s)=1$.) Y X Y ⇒)
I 2 I ⇒ $\left(\frac{1}{2}=\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right)$, $\left(\frac{1}{2}\right) = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$

2. For the following matrices, find a Jordan basis and put the matrix into Jordan canonical form. \mathbf{r}

form.
\n
$$
{}^{b)} B = \begin{pmatrix} 1 & 1 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}
$$
\n
$$
{}^{c} B(A) = det (B - \lambda I) \qquad \text{There is only one eigenvalue 1. } \text{Im}(A) = 3. \text{ [see (8-1) and (9-1)]}.
$$
\n
$$
(\text{upper } \Delta) = ((-\lambda)^3) \qquad \text{my}(\text{double } \Delta = 1, 2, 3)
$$
\n
$$
{}^{b)} \text{my}(\text{left } \Delta = \frac{1}{2} \text{ [in ker (B, 1)]} = 3 - rk (B - I) = 3 - rk \left(\frac{8}{2}, \frac{6}{2}\right) = 2. \text{ [in ker (1, 1)]}
$$
\n
$$
{}^{c} \text{my}(\text{left } \Delta = 1) = \frac{1}{2} \text{ [in ker (B, 1)]} = 3 - rk (B - I) = 3 - rk \left(\frac{8}{2}, \frac{6}{2}\right) = 2. \text{ [in ker (1, 1)]}
$$
\n
$$
{}^{c} \text{ker} (B - I) = \frac{1}{2} \text{ [in ker (1, 1)]} = \frac{1}{2} \text{ [in ker (
$$

- 1. (True/False Jeopardy) Supply convincing reasoning for your answer.
	- (a) T F Suppose that T is a linear operator on V and that $\beta = \{v_1, \ldots, v_n\}$ is a basis of V such that $[T]_{\beta}$ is in Jordan canonical form. If a_1, \ldots, a_n are nonzero scalars, then $\beta' = \{a_1v_1, \ldots, a_nv_n\}$ is a basis of V such that $[T]_{\beta'}$ is in Jordan canonical form.
- (b) T F If T is a linear operator on V with λ as an eigenvalue, then we may write $V = K_{\lambda} \oplus W$, where W is some T-invariant subspace.
	- (c) T F Any linear operator on a finite-dimensional vector space whose characteristic polynomial splits has a Jordan canonical form.
	- (d) T F Every generalized eigenspace of a linear operator T is T -cyclic.

 (a) False. $T =$ ($'$ $\binom{1}{1}$ in $\left\{e_1,e_2\right\}$ Then, \bar{w} $\{e_1, 2e_2\}$, \bar{t} becomes f $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

 (b) True. (c) True. Remember! | Theorem learned from class. THIT Only need to think about the case only for an eigenvalue λ \qquad m and $mg(h) = 1$. $\chi_A(\lambda) = (\lambda - \lambda_o)$ and $m_0(\lambda_o) = 1$.
The contains a basis whose matrix is and the stabilizing exponent m . of the form (^k!).

(d) False.

$$
\overline{\mathcal{L}} = \mathcal{I}_V \quad , \quad \lambda = 1.
$$

 $V = \text{ker}(\tau - \lambda I)^{m}$ \oplus $\overline{\tau}$ m (