1. Prove that if T': V' — V is a linear operator on a finite dimensional vector space V, then
rk 7™ = rk ™! for some m > 1, and in this case, tk 7™ = rk T™t* for all k£ > 0.
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2. For the following matrices, find a Jordan basis and put the matrix into Jordan canonical

form.
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2. For the following matrices, find a Jordan basis and put the matrix into Jordan canonical

form. |
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1. (True/False Jeopardy) Supply convincing reasoning for your answer.

(d T F

Suppose that T is a linear operator on V and that 8 = {vy,...,v,} is a basis of V
such that [T]g is in Jordan canonical form. If ay, ..., a, are nonzero scalars, then
B ={ajv1,...,anv,} is a basis of V such that [T is in Jordan canonical form.
If T is a linear operator on V with A as an eigenvalue, then we may write V' =
Ky ® W, where W is some T-invariant subspace.

Any linear operator on a finite-dimensional vector space whose characteristic poly-
nomial splits has a Jordan canonical form.

Every generalized eigenspace of a linear operator T is T-cyclic.
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