- 1. Let $T: \mathbb{C}^4 \to \mathbb{C}^4$ be linear and suppose that $p(T) = 0$ where p is a polynomial of degree 3. Show that \mathbb{C}^4 is not T-cyclic.
- T-cyclic means the T-cyclic subspace generated by a nector v. $=$ Span $\{v, \top v, \top^2 v, \top^3 v, \cdots \}$ $P(E) = E^4$ = $Spm\{v, \tau v, \cdots, \tau^m v\}$ $T = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow T^4 = 0_{ux}q$ $v = v_0$
 $v = v_$ Guess & Claim: The dimension is not enough. To be precise, 72+1. V is a linear combination of survively). proof. Let $p(t)$ be $a_{0}+a_{1}t+a_{2}t^{2}+a_{3}t^{3}$ with $a_{3}\neq0$ (: deg $p=3$). Then, $a_3T^3 = -a_2T^2-a_1T-a_2T$ and we can divide by a_3 . \therefore $T_{2}^{3} - \frac{0.2}{0.3}T^{2} - \frac{0.7}{0.3}T - \frac{0.6}{0.3}T$ $\therefore T^3 V = -\frac{Q_2}{Q_3} \cdot T^3 V - \frac{Q_1}{Q_3} \cdot T_V - \frac{Q_2}{Q_3} \cdot V$

 $B||$

2. Suppose that the eigenvalues of $T \in \mathcal{L}(\mathbb{C}^4, \mathbb{C}^4)$ are 2 and 3 only. Find all possible Jordan canonical forms of T. Don't list two Jordan forms if one can be obtained from the other by changing the order of the Jordan blocks.

 $\sqrt[3]{\binom{1}{2}}$

1. Let
$$
T, S \in \mathcal{L}(V, V)
$$
 be commuting linear operators, i.e. $TS = ST$. Show that the generalized eigenspaces $G_{\lambda}(T)$ are S -invariant.
\n $\mathcal{L}f(x)$ and $\mathcal{L}f(x)$.
\nTo prove that $W \in S - \tilde{r} \cup \mathcal{L}(V) \cup \mathcal{L}f(x)$, we prove that $\mathcal{L}f(x)$.
\nTo prove that $W \in S - \tilde{r} \cup \mathcal{L}(V)$. Let S so we have $\mathcal{L}f(x)$.
\nLet ω be an arbitrary element of $G_{\lambda}(T)$. (This is to say $(T-\lambda I)^{k} \omega = 0$
\n ω need to prove that $S \cdot \omega$ satisfies $(T-\lambda I)^{k} \mathcal{L} \omega = 0$ for some k .
\nHowever, from $ST = TS$. ω get $(T - \lambda I)S = TS - \lambda S = ST - S\lambda$
\n $= S(T - \lambda I)$.
\n $\mathcal{L}f(x)$ and so,
\n $(T - \lambda I)^{k}S \cdot \omega = S \cdot (T - \lambda I)^{k} \omega = S \cdot 0 = O$.
\n $\mathcal{L}f(x)$ and so,
\n $(T - \lambda I)^{k}S \cdot \omega = S \cdot (T - \lambda I)^{k} \omega = S \cdot 0 = O$.

1. Show that Jordan blocks are always similar to their transposes. Conclude that A is similar to At for any $A \in M_{n \times n}(\mathbb{C})$.
 $\begin{aligned} \n\int &= Q \int^t Q^{-1} \text{ for } Q = \left(\begin{matrix} \cdot & \cdot \end{matrix}\right) \n\end{aligned}$

Any Jordan block \int is $\lambda I + N$ where $N = \left(\begin{matrix} 0 & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \cdot & \cdot \cdot \cdot \cdot$ So, for any inventible Q, QJQ⁻¹= Q (1I+N) Q⁻¹ = $\lambda QIQ^{-1} + QNQ^{-1} = \lambda I + QNQ^{-1}$ So, we need to find Q st QNQ'= N^t. But, N behaves e_{n-1} e_{n-1} \rightarrow \cdots \rightarrow e_{n} \rightarrow o . N^{+} : e_{1} \rightarrow e_{2} \rightarrow \cdots \rightarrow e_{n} \rightarrow o . So, $Q = He$ change of constructes matrix $\{e_n, \dots, e_n\} \rightarrow \{e_1, \dots, e_n\}$ will note. $=$ (μ^{\prime}). You can do sanity check! Note that similarity is transitive & $B=\alpha A a^{-1} \Rightarrow B^{\epsilon}=(a^{\epsilon})^{-1}A^{\epsilon} a^{\epsilon}$.
 $H_{\text{tot}} = 1$ Let J be a Jordan canonical form of A. Then, $A \sim J \sim J^t \sim A^t$.

- 1. (True/False Jeopardy) Supply convincing reasoning for your answer.
	- (a) T F Reordering the elements of a Jordan basis gives another Jordan basis. (A Jordan basis of a linear operator is a basis that puts it into Jordan canonical form.)
	- (b) T F If V is a finite-dimensional vector space over $\mathbb C$, then every linear operator on V can be put into Jordan canonical form.
	- (c) T F If A and B are both Jordan normal forms for a linear operator T, then $A = B$.
	- (d) T F If $T: \mathbb{C}^n \to \mathbb{C}^n$ is linear and \mathbb{C}^n is T-cyclic, then the Jordan canonical form of T has a single block. \bullet