2. Find all eigenvectors and eigenvalues for the linear map
$$T: \mathbb{C}^{4} \to \mathbb{C}^{4}$$
 given by $T(w, x, y, z) = 1$
(x, y, z, w). Hint: it is not necessary to write down the matrix for T .
(What is the very definition of eigen xxx?
 $T(w, x, y, z) = \lambda \cdot (w, x, y, z)$.
 $T(w, x, y, z) = \lambda \cdot (w, x, y, z)$.
 $T(w, x, y, z) = \lambda \cdot (w, x, y, z)$.
 $T(w, x, y, z) = \lambda \cdot (w, x, y, z)$.
 $T(w, x, y, z) = \lambda \cdot (w, x, y, z)$.
 $T(w, x, y, z) = \lambda \cdot (w, x, y, z)$.
 $T(w, x, y, z) = \lambda \cdot (w, x, y, z)$.
 $T(w, x, y, z) = \lambda \cdot (w, x, y, z)$.
 $T(w, x, y, z) = \lambda \cdot (w, x, y, z)$.
 $T(w, x, y, z) = \lambda \cdot (w, x, y, z)$.
 $T(w, x, y, z) = \lambda \cdot (w, x, y, z)$.
 $T(w, x, y, z) = \lambda \cdot (w, x, y, z) = \lambda \cdot (w, x, y, z)$.
 $T(w, x, y, z) = \lambda \cdot (w, x, y, z) = \lambda \cdot (w, x, y, z)$.
 $T(w, x, y, z) = \lambda \cdot (w, y, z) = \lambda \cdot (w, x, y, z) = \lambda \cdot (w, x, y, z) = \lambda \cdot (w, x, y, z) = \lambda \cdot (w, y, z) = \lambda \cdot (w, x, y, z) = \lambda \cdot (w, x, y, z) = \lambda \cdot (w, y, z) = \lambda \cdot (w, z, y, z)$

$$= \lambda \cdot (w, z, y, z) = \lambda \cdot (w, z, y, z) = \lambda \cdot (w, z$$

3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a diagonalizable linear transformation. Show that there exists a linear map $S : \mathbb{R}^3 \to \mathbb{R}^3$ such that $S^3 = T$. Suppose that T becomes a diagonal metrix in a basis ß. $[T]_{p} = \begin{pmatrix} a \\ b \end{pmatrix}$. What would be an "educated guess"? Something like $\begin{pmatrix} a^{1/3} & b^{1/3} \\ & a^{1/3} \end{pmatrix} \begin{bmatrix} (Note that <math>y = \chi^3 \text{ is a bijective} \\ function from IR to IR. \\ Nonce, unique 1/3 - power!) \end{bmatrix}$ Let S be the linear transformation $Monce, unit is the basis B is <math>\begin{pmatrix} a^{k_3} \\ b^{k_3} \\ c^{k_3} \end{pmatrix}$ Then, $[S^3]_{\beta} = [S]_{\beta}[S]_{\beta}[S]_{\beta} = \begin{pmatrix} \alpha^{k_3} \\ \beta^{k_3} \\ \beta^{k_3} \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \beta \end{pmatrix} = [T]_{\beta}.$ Therefore, S=T.

1. Suppose V is finite-dimensional and $T: V \to V$ is linear and $T^2 = \mathcal{I}_V$. Show that T is diagonalizable. Some doodling: T²=Iv. Can you find some info about eigenvalues? If $T_v = \lambda v$, then $T^2 v = T T v = T \lambda v = \lambda T v = \lambda^2 = 1$ $v = I_v v^{"}$ $\Rightarrow \lambda = \pm 1.$ We found: ONLY two eigenvalues are possible! Let's compute dim E, todim E, with the hope that it will reach to dim V! But, no info at all = $\dim \ker (T - Iv) + \dim \operatorname{in} (T - Iv) = \dim V$ $\dim \ker (T + Iv) + \dim \operatorname{in} (T + Iv) = \dim V$ We have dimension therem : \Rightarrow $Next, 0=T^{-}Iv = (T - Iv) \cdot (T + Iv) = in (T + Iv) \leq ker(T - Iv) = dimin(T + Iv) \leq dim ker(T - Iv)$ \therefore dim ker(T-Iv) + dim ker(T+Iv) \ge dim V. On the other hand, eigenvectors corresponding to (and -1 are linearly independent. : dim ker (T-Iv) + dim ker (T+Iv) = dim V. => The union of bases of each will be on eigenbasis.

- 1. (True/False Jeopardy) Supply convincing reasoning for your answer.
 - (a) T F Eigenvalues of a matrix may be zero.
 - (b) T F If two matrices have the same characteristic polynomial, then they must be similar.
 - (c) T F If $A \in M_{n \times n}$ is invertible and λ is an eigenvalue for A, then $1/\lambda$ is an eigenvalue for A^{-1} .
 - (d) T F Let $T, S \in \mathcal{L}(V, V)$ have eigenvalues λ and μ , respectively. Then $\lambda + \mu$ is an eigenvalue for T + S.

a. Trueb. Falsec. True
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $A v = \lambda v = \lambda \cdot A^{-} v$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $A v = \lambda v = \lambda \cdot A^{-} v$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \end{pmatrix}$ $A v = \lambda \cdot A^{-} v$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $A v = \lambda \cdot A^{-} v$

$$T = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad 0 + 0 = 0 \text{ is NOT}$$
$$S = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \text{an eigenvalue of } \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$