B" definition of eigen xxx ? what is the very ^Z) ⁼ d- (wing, -2). . : x ⁼ dw Taking the product . Tfw, my, we get : ^H ^y ⁼ da ^w) 2- ⁼ dy NyZw=d4ayzw . (Kid , Z, ^W = dz There are two cases now: k¥1 OR RyZw=O. - 1=0 ⇒ 412-174417=0 If one of them is zero , 'd i . i . then the others are all zeros . l D= I . , Let w =L . Then the others are (Inductively) ⇒ (wiki^Y, o) Z) = Co. o.O, determined automatically. For d . you get a. d. it, We do not count such vectors !). d ^I i i d ^l v

3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a diagonalizable linear transformation. Show that there exists a linear map $S : \mathbb{R}^3 \to \mathbb{R}^3$ such that $S^3 = T$.
Suppose that T becomes a digerral metrix in a basis β . a " ? $[T]_p = \begin{pmatrix} a & b \end{pmatrix}$. What would be an "educated" guess Something like $\begin{pmatrix} a^{k_3} \\ a^{k_4} \end{pmatrix}$ $\begin{array}{c} \mathcal{L}_{3} \\ \mathcal{L}_{4} \end{array}$) $\begin{array}{c} \mathcal{L}_{5} \\ \mathcal{L}_{6} \end{array}$ (Note that $\mathcal{L}_{5}=\mathcal{X}^{3}$ is a b bijective function from $\mathbb R$ to $\mathbb R$. Let S be the linear transformation None, unique 1/3 - power!) r
1 $\begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$ \mathcal{S}^{\prime} whose matrix in the basis β is Then, $[S^3]_{\beta} = [S]_{\beta} [S]_{\beta} [S]_{\beta} = (\alpha^2)$ r
13 $\left(\begin{matrix} a_1 \\ b_2 \end{matrix}\right) = \left(\begin{matrix} a_1 \\ b_2 \end{matrix}\right) = \left[\begin{matrix} a_1 \\ a_2 \end{matrix}\right]$ $\mathcal{C}% _{M_{1},M_{2}}^{(h,\sigma),(h,\sigma)}(-\varepsilon)$ Therefore , SET.

1. Suppose V is finite-dimensional and $T: V \to V$ is linear and $T^2 = \mathcal{I}_V$. Show that T is diagonalizable. Some doodling: $T^2=I_v$. Can you find some info about eigenvalues? \vec{H} Tv = λv , then $T^2v = TTv = T\lambda v = \lambda Tw = \lambda^2v \Rightarrow \lambda^2 = 1$
 $V = \lambda v$, then $V = \lambda v = T\lambda v = \lambda Tw = \lambda^2v$ We fand: ONLY two eigenvalues are possible! Let's compute dim E, tdimE, with the hope that it will reach to dimV! $\mathcal{I}_{\mathcal{V}})+$ din $\bar{\mathfrak{m}}(\mathcal{T}-\mathcal{I}_{\mathcal{V}})=$ din V But, no info at all in
We have dimension themem in wat, no info at all n
We have dimension theorem \therefore => dimber (T+Iv) + dim in (T+Iv) = dimV N ext, $0 = T^2 - I_V = (T - I_V) \cdot (T + I_V)$: \overline{I}_{V} in $(T + I_V) \subseteq \overline{\mathsf{ker}(T - I_V)} \Rightarrow$ $\frac{d^2}{dt^2}$ \therefore dim ker $(T-I_v)$ + dim ker $(T+I_v) \geq$ dim V . On the other hand, eigenvectors corresponding to land -1 are linearly independent. $-$ dim ker (T-Iv) $+$ dim ker (T+Iv) $=$ dim \vee \Rightarrow The union of bases of each - ' will be an eigenbasis .

- 1. (True/False Jeopardy) Supply convincing reasoning for your answer.
	- Eigenvalues of a matrix may be zero. (a) T F
	- If two matrices have the same characteristic polynomial, then they must be similar. (b) T F
	- If $A \in M_{n \times n}$ is invertible and λ is an eigenvalue for A, then $1/\lambda$ is an eigenvalue T F (c) for A^{-1} .
	- (d) T F Let $T, S \in \mathcal{L}(V, V)$ have eigenvalues λ and μ , respectively. Then $\lambda + \mu$ is an eigenvalue for $T + S$.

$$
0. True \qquad b. False \qquad \qquad 0. True \qquad \qquad 0. True
$$

$$
T=(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array})
$$
 0+0=0 is NOT

$$
S=(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array})
$$