

1. Suppose that $V = U \oplus W$. Show that every $v \in V$ can be uniquely written in the form

v = u + w with $u \in U$ and $w \in W$. · Existence $\gamma \in V = U \oplus W$

· Ungueress. Suppose that V = U + W for some $U \in U$, $U \in W$.

Then $u + \omega = u' + \omega'$. So, $u - u' = \omega' - \omega$. As it is direct. UnW=339. U (bk Uz a vec.sp.)

- 1. (True/False Jeopardy) Supply convincing reasoning for your answer.
 - (a) T F A set of vectors S in a vector space is linearly dependent if and only if **each** vector in S can be written as a linear combination of the others.
 - (b) T F Any two elements of $\mathbb R$ are linearly dependent (where $\mathbb R$ is considered as a vector space over the field $\mathbb R$).
 - (c) T F If $S \subseteq S'$, then $\operatorname{Span}(S) \subseteq \operatorname{Span}(S')$.
 - (d) T F If S and S' are finite subsets of a vector space V and Span(S) = Span(S'), then there are the same number of elements in S and S'.

Poll.